Synthesis of Water-Dispersed Ferrecene/Phenylboronic Acid-Modified Bifunctional Gold Nanoparticles and the Application in Biosensing

نویسندگان

  • Yun Xing
  • Lin Liu
  • Danqing Zhao
  • Yixin Yang
  • Xiaoran Chu
چکیده

Phenylboronic acids can form tight covalent bonds with diol-containing biomolecules. In this work, water-dispersed bifunctional gold nanoparticles (AuNPs) modified with ferrecene (Fc)-derivatized peptides and 4-mercaptophenylboronic acids (MBA) (denoted as Fc-MBA-AuNPs) were synthesized and characterized by UV/vis spectrometry and transmission electron microscopy. To demonstrate the application and the analytical merits of the nanoparticles in biosensing, glycoprotein avidin was tested as a model analyte. Specifically, avidin was captured by the biotin-covered gold electrode via the strong biotin-avidin interaction. Then, Fc-MBA-AuNPs were attached by the captured avidin through the formation of tight covalent bonds between the boronic acid moieties of Fc-MBA-AuNPs and the oligosaccharides of avidin. As a result, a detection limit of 0.2 pM was achieved. We believe that the bifunctional nanoparticles would found many applications in amplified detection of diol-containing species by rational design of the surface chemistry of electrode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Molybdophosphoric Acid as Reducing Agent/ Stabilizer in the Synthesis of Gold Nanoparticles under UV Irradiation

In this paper, we have described the size-controlled synthesis of gold nanoparticles based on the reduction of Au3+ (HAuCl4 ) using molybdophosphoric acid (H3[PMo12O40 ], HPMo) under UV-irradiation. In the process, HPMo plays the role of photocatalyst, reducing agent and stabilizer and propan-2-ol acts as a sacrificial agent. This method allows the synthesis of uniform hexagonal nanoparticles w...

متن کامل

Folate-Conjugated Gold Nanoparticles (Synthesis, Characterization and Design for Cancer Cells Nanotechnology-based Targeting)

A new folate-conjugated gold nanoparticle (AuNP) has been designed to selectively target the folate receptor that is overexpressed on the surface of tumoral cells. For this purpose, we made 4-aminothiophenol, as a bifunctional linker to react with HAuCl4 in the presence of sodium borohydride and it was binded to the AuNP surface through its thiol group. Then, we conjugated amino-terminated nano...

متن کامل

Synthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids

Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...

متن کامل

Ecofriendly synthesis of biscoumarin derivatives catalyzed by EDTA-modified magnetic animal bone meal nanoparticles in water

In this research, magnetic animal bone meal nanoparticles functionalized with ethylenediaminetetraacetic acid (Fe3O4@ABM-EDTA) is reported as a green recyclable catalyst that catalyzed synthesis of biscoumarin derivatives in water. The catalyst was characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermogra...

متن کامل

Ecofriendly synthesis of biscoumarin derivatives catalyzed by EDTA-modified magnetic animal bone meal nanoparticles in water

In this research, magnetic animal bone meal nanoparticles functionalized with ethylenediaminetetraacetic acid (Fe3O4@ABM-EDTA) is reported as a green recyclable catalyst that catalyzed synthesis of biscoumarin derivatives in water. The catalyst was characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermogra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014